A Logistic Regression Benchmark for Red Hat Customer Business Value Prediction Problem

Red Hat put out a competition on Kaggle asking people to build models to predict customer potential. It is a simple binary classification problem and the metric to this problem that Red Hat wanted to determine which model rank best is the AUC score.

I am sort of late in participating in this competition, and there are only 7 days to go. I sketched a rather simple logistic regression model, and it ranks somewhere in the middle among 2,200 teams in total. Kind of surprised to see that a simple logistic regression can beat half of the participants.

My model uses all the features and I find out the penalty strength parameter C should take on value 10.

Below is my code:

Leave a Reply

Your email address will not be published. Required fields are marked *